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Resumen

Se presenta un programa para realizar un ex-
perimento de Monte Carlo. Como ejemplo se 
utiliza una distribución de Dickey-Fuller. Al 
evitar el uso de matrices el código propuesto 
es más fácil de ejecutar que el diseñado por, 
entre otros, Brooks (2002) o Fantazzini (2007). 
Se presentan algunas notas respecto a la técnica 
de Monte Carlo y sobre las pruebas de raíces 
unitarias. Al final se comparan los valores crí-
ticos obtenidos con los reportados por Brooks 
(2002), Charemza and Deadman (1992), En-
ders (2004), y Patterson (2000).

Abstract

We present a computer program to run a 
Monte Carlo experiment. We use as exam-
ple a Dickey-Fuller distribution. Avoiding 
the use of matrices, the proposed program 
is easier to put into practice than the code 
designed by, among others, Brooks (2002) or 
Fantazzini (2007). Some remarks about the 
Monte Carlo method and unit root tests are 
included. At the end we compare our critical 
values with the ones in Brooks (2002), Cha-
remza and Deadman (1992), Enders (2004), 
and Patterson (2000).
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“But with this miraculous development of the eniac—along with the applications Stan 

must have been pondering—it occurred to him that statistical techniques should be 

resuscitated, and he discussed this idea with von Neumann. Thus was triggered the spark 

that led to the Monte Carlo method.” Nicholas Metropolis (1987, p. 126).

“The obvious implications of these results are that applied econometricians should not 

worry about spurious regressions only when dealing with I(1), unit root, processes. Thus, 

a strategy of first testing if a series contains a unit root before entering into a regression 

is not relevant”. Clive W. J. Granger (2003, p. 560).

1. Unit roots always cause trouble

It came as a bit of shock when econometricians realized that the “t” and the 
Durbin-Watson statistics did not retain its traditional characteristics in the 
presence on nonstationary data, i.e. regressions involving unit root process 
may give non-sense results. Following Bierens (2003), it is correct to say that, 
if y

t
 and x

t
 are mutually independent unit root processes, i.e. y

t
 is indepen-

dent of x
t-j
 for all t and j, then ols regression of y

t
 on x

t
 for t=1,…,n, with or 

without an intercept, will yield a significant estimate of the slope parameter 
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if n is large: the absolute value of the t-value of the slope converges in pro-
bability to ∞ if n → ∞. We then might conclude that y

t
 depends on x

t
, while 

in reality the y
t
s are independent of the x

t
s. Phillips (1986) was able to show 

that, in such a case, DW statistic tends to zero. Hence, adding lagged depen-
dent and independent variables would make the misspecified problem worse. 
By the way, the first simulation on the topic was by Granger and Newbold 
(1974). They generated two random walks, each one had only 50 terms and 
100 repetitions were used! In this sense (Granger, 2003, p. 559), “it seems that 
spurious regression occurs at all sample sizes.”

How does one test for non-stationarity? In first place a variable is said to 
be integrated of order d, written I(d), if it must be differenced d times to be 
made stationary. Thus a stationary variable is integrated of order zero, written 
I(0), a variable which must be differenced once to become stationary is said to 
be I(1) integrated of order one, and so on. Economic variables, which include 
financial ones, are seldom integrated of order greater than two.

Consider the simplest example of an I(1) variable, a random walk without 
drift. Let y

t
 = y

t-1
 + e

t
, where e

t
 is a stationary error term, i.e. , e

t
 is I(0). Here 

y
t
 can be seen to be I(1) because ∆y

t
 = e

t
 , which is I(0) Now let this relations-

hip be expressed as y
t
 = ρ*y

t-1
 + e

t
. If |ρ|<1, then y is I(0) i.e., stationary, but 

if ρ=1 then y
t
 is I(1), i.e., nonstationary. In this sense, typically formal tests 

of stationarity are test for ρ=1, and because of this are referred to as tests for 
a unit root. By the way, the case of |ρ|>1 is ruled out as being unreasonable 
because it would cause the series y

t
 to explode. In other words, for an I(2) 

process the remote past is more influential that the recent one, which makes 
little sense.

In terms of our economics common-sense, the differences between a sta-
tionary, or “short memory” variable, and an I(1) or “long memory” one, are 
clues:

1.	 A stationary time series has a mean and there is a tendency for the series 
to return to that mean, whereas an integrated one tends to wander “wi-
dely”.

2.	 Stationary variables tend to be “erratic”, whereas integrated variables tend 
to exhibit some sort of smooth behavior (because of its trend).

3.	 A stationary variable has a finite variance, shocks are transitory, and its 
autocorrelations ρk die out as k grows, whereas an integrated series has 
an infinite variance, i.e. it grows over time, shocks are permanent, and its 
autocorrelations tend to one (Patterson, 2000).
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2. Monte Carlo simulations

A Monte Carlo experiment attempts to replicate an actual data-generating 
process (dgp). The process is repeated numerous times so that the distribution 
of the desired parameters and sample statistics can be tabulated. Its reliability is 
warranted by the Law of Large Numbers: as the sample size grows sufficiently 
large, the sample statistic converges to the true one. Thus, the sample statistic 
is an unbiased estimate of the population one. The beauty of the simulation is 
that attributes of the constructed series are known to the researcher. It is well-
known that a limitation of a Monte Carlo experiment is that the results are 
specific to the assumptions used to generate the simulated data. For example, 
if you modify the sample size, include or delete an additional parameter, or 
use an alternative initial condition, a new simulation needs to be performed.1

3. An Eviews program to run a Monte Carlo experiment: 
a Dickey-Fuller distribution

In order to generate a Dickey-Fuller distribution using a Monte Carlo ap-
proach, it is necessary to follow four steps:

1.	 Generate a sequence of (seudo) random numbers e
t
 based on a standard 

normal distribution.2

2.	 Generate the sequence y
t
 = ρ*y

t-1
 + e

t
 (eq. 1), where ρ = 1. With the 

intention of minimize the influence of y
o
, its value is fixed to zero and  

T = 500.
3.	 Estimate the model ∆y

t
 = γ*y

t-1 
+ e

t
 (eq. 2), where γ = ρ-1. Following 

Dickey and Fuller (1979, 1981), the “t”-statistic will be recorded as . Ob-
tain its distribution is our goal. According to Patterson (2000, p. 228), even 
though γ = 0 by construction, “the presence of e

t
 a random disturbance 

term, will prevent us from reaching this conclusion with certainty from a 
particular dataset”, that is, there will be a distribution of the  with nonzero 
values occurring; if the estimation method is unbiased then this should be 
picked up if T is large enough “by an average of over the T samples equal 
to the value in the dgp”. About eq. 2 Charemza and Deadman (1997, p. 
99) remind us that, because it is a regression of an I(0) variable on a I(1) 

1 “The term is reported to have originated with Metropolis and Ulam (1949). If it had been coined 
a little later, it might have been called the ‘Las Vegas method’ instead of the ‘Monte Carlo method’” 
(Davidson and MacKinnon, 1993, p. 732). According to Dufour and Khalaf (2003), early uses in 
econometrics of Monte Carlo test techniques were Dwass (1957), Barnard (1963) and Birnbaum 
(1974).
2 Its mechanics is fully explained in Davidson and MacKinnon (1993).
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variable, “not surprisingly, in such a case the t-ratio does not have a limi-
ting normal distribution.”

4.	 Repeat steps 1 to 3. By the way, Dickey and Fuller (1979, 1981) obtained 
100 values for e

t
, set γ = 1, y

0
 = 0 and calculated, accordingly, 100 values 

for y
t
.

The Eviews program to run the experiment is the following:

‘Create a workfile undated, range 1 to 500.
!reps = 50000
for !i=1 to !reps
genr perturbacion{!i}=@nrnd
smpl 1 1
genr y{!i}=0
smpl 2 500
genr y{!i}=y{!i}(-1)+perturbacion{!i}
smpl 1 500
matrix(!reps,2) resultados
equation eq{!i}.ls D(y{!i})=c(1)*y{!i}(-1)
resultados(!i,1)=eq{!i}.@coefs(1)
resultados(!i,2)=eq{!i}.@tstats(1)
d perturbacion{!i}
d y{!i}
d eq{!i}
NEXT
‘Export “resultados” to Excel.
‘Create a workfile undated, range 1 to 50,000.
‘Copy and paste from Excel to the workfile.

The critical values depend on the specification of the null and alternative 
hypotheses. The H

o
: γ = 0 implying y

t
 = ρ*y

t-1
 + e

t
 with ρ =1, that is, y

t
 ~ 

I(1). The alternative “should be chosen to maximize the power of the test in 
the likely direction of departure from the null. A two-sided alternative γ ≠ 0, 
comprising γ > 0 and γ < 0 is not chosen in general because γ > 0 corresponds 
to ρ > 1 and in that case the process generating y

t
 is not stable; instead the 

one-side alternative H
a
: γ < 0, that is ρ < 1, is chosen because departures from 

the null are expected to be in this direction corresponding to an I(0) process. 
Thus the critical values are negative, with sample values more negative than 
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the critical values leading to rejection of the null hypothesis in the direction 
of the one-side alternative” (Patterson 2000, p. 228). The empirical distri-
bution of our Dickey-Fuller statistic and its descriptive statistics are shown in 
the following figures:

Figure 1
Histogram and estimated densities of the Dickey-Fuller statistic

Figure 2
Descriptive statistics
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It is clear that the simulated distribution is not like that of the t-distribution, 
which is symmetric and centered at zero. In Excel we sort τ� from the highest 
values to the lowest ones. The value of -1.9359 is the average between the 
2500th and 2501st lowest values in the 50,000 replications, and may be regar-
ded as the critical value at the level of significance of 5%.

As a final point, in the following table we compare our results with those 
of Brooks (2002), Charemza y Deadman (1992), Enders (2004), and Patter-
son (2000).

Table 1. Critical values, Dickey-Fuller distribution

Sample size (T) Replications

Brooks (2002) 1000 50,000 -1.950

Charemza y Deadman (1992) 50 50,000 -1.949

Enders (2004) 100 10,000 -2.890

Patterson (2000) 500 25,000 -1.943

4. Final comments

It is an undeniable true the 3th law in econometrics proposed by Phillips 
(2003, p. 8), which I borrowed it as the title of the first section: “units roots 
always cause trouble”. At the moment, you can find not only a good number 
of papers that propose unit root tests, but also on testing strategies (Perron 
1988, Dolado, Jenkinson, and Sosvilla-Rivero 1990, Holden and Perman 
1994, Enders 1995, Ayat and Burridge 2000, and Elder and Kennedy 2001). 
Following Bierens (2003), I recommend the two most frequently applied ty-
pes of unit root tests, the Augmented Dickey Fuller and the Phillips-Perron 
tests, and the strategy proposed by Dolado et al. (1990).

Indeed Monte Carlo simulations “have revolutionized the way we ap-
proach statistical analysis” (Dufour and Khalaf, 2003, p. 494). We hope that 
the proposed program, easy to run, and the relevance of the used example, 
the Dickey-Fuller distribution, both serve as an introduction to the quoted 
literature.
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