

Universidad Nacional Autónoma de México Facultades de Economía e Ingeniería

LICENCIATURA EN ECONOMÍA Y NEGOCIOS

PROGRAMA DE ESTUDIO

Cálculo Diferencial				P81°/P71°/F	291 °	09	
		Asignatura	Clave	Semestre	e	Créditos	
		Ciencias Básicas		Matemáticas Básicas			
		División		Departamento			
	Asign	atura:	Horas:		Total (horas):	•	
	Obliga	atoria X	Teóricas 4.5		Semana	4.5	
	Optati	va 📗	Prácticas 0.0		16 Semanas	72.0	
Tipo de as	ignatura	a: Teórica					
Área de co	nocimie	ento: Matemáticas					
Modalidad	l: Curso						
Seriación	obligato	ria antecedente: Ningur	na				
Seriación	obligato	ria subsecuente: Cálcul	o Integral				
-		rso: El alumno aplicará la formulación de model	-				
Temario							
	Núm.	Nombre				Horas	
	1.	Funciones				13.5	
	2.	Límites y continuidad				15.0	
	3.	La derivada y algunas			18.0		
	4.	Variación de funciones			9.0		
	5.	Sucesiones y series				16.5	
						72.0	
		Prácticas de laboratorio)			0.0	
		Total				72.0	

(2/5)

1 Funciones

Objetivo: El alumno utilizará el concepto de función y sus características principales para aplicarlos en la formulación de modelos matemáticos.

Contenido:

- **1.1** Definición de función real de variable real y su representación gráfica. Definiciones de dominio, de codominio y de recorrido. Notación funcional. Funciones: constante, identidad, valor absoluto.
- **1.2** Funciones inyectivas, suprayectivas y biyectivas.
- 1.3 Igualdad de funciones. Operaciones con funciones. Función composición. Función inversa.
- **1.4** Clasificación de funciones según su expresión: explícitas, implícitas, paramétricas y dadas por más de una regla de correspondencia.
- **1.5** Funciones algebraicas: polinomiales, racionales e irracionales. Funciones pares e impares. Funciones trigonométricas directas e inversas y su representación gráfica.
- **1.6** Formulación de funciones como modelos matemáticos de problemas físicos y geométricos.

2 Límites y continuidad

Objetivo: El alumno aplicará el concepto de límite para calcular el límite de una función y para determinar su continuidad.

Contenido:

- **2.1** Concepto de límite de una función en un punto. Interpretación geométrica.
- **2.2** Existencia de límite de una función. Límites de las funciones constante e identidad, y demostración de su existencia. Enunciados de teoremas sobre límites. Formas determinadas e indeterminadas. Cálculo de límites.
- **2.3** Definición del límite de una función cuando la variable independiente tiende al infinito. Cálculo de límites de funciones racionales cuando la variable tiende al infinito. Límites infinitos.
- **2.4** Obtención del límite de sen x, cos x y (sen x) / x cuando x tiende a cero. Cálculo de límites de funciones trigonométricas.
- **2.5** Concepto de continuidad. Límites laterales. Definición y determinación de la continuidad de una función en un punto y en un intervalo. Enunciado de los teoremas sobre continuidad. Continuidad a través de los incrementos de las variables dependiente e independiente.

3 La derivada y algunas de sus aplicaciones

Objetivo: El alumno aplicará el concepto de la derivada y sus interpretaciones física y geométrica, en la resolución de problemas.

Contenido:

- **3.1** Definición de la derivada de una función en un punto. Interpretaciones física y geométrica. Notaciones y cálculo a partir de la definición. Función derivada.
- **3.2** Derivación de la suma, producto y cociente de funciones. Derivación de una función elevada a un exponente racional.
- **3.3** Derivación de la función compuesta. Regla de la Cadena. Derivación de la función inversa.
- **3.4** Derivación de las funciones trigonométricas directas e inversas.
- **3.5** Definición de derivadas laterales. Relación entre derivabilidad y continuidad.

- **3.6** Derivación de funciones expresadas en las formas implícita y paramétrica.
- **3.7** Definición y cálculo de derivadas de orden superior.
- **3.8** Aplicaciones geométricas de la derivada: dirección de una curva, ecuaciones de la recta tangente y la recta normal, ángulo de intersección entre curvas.
- **3.9** Aplicación física de la derivada como razón de cambio de variables relacionadas.
- **3.10** Conceptos de función diferenciable y de diferencial, e interpretación geométrica. La derivada como cociente de diferenciales. Permanencia de la forma de la diferencial para una función de función. Problemas de aplicación. Diferenciales de orden superior.

4 Variación de funciones

Objetivo: El alumno hará el análisis de la variación de funciones para conocer las características geométricas de la gráfica de una función y lo aplicará en la resolución de problemas de optimación.

Contenido:

- **4.1** Enunciado e interpretación geométrica de los teoremas de Weierstrass y de Bolzano. Enunciado, demostración e interpretación geométrica del teorema de Rolle y del teorema del Valor Medio del Cálculo Diferencial.
- **4.2** Funciones crecientes y decrecientes y su relación con el signo de la derivada.
- **4.3** Máximos y mínimos relativos. Criterio de la primera derivada. Concavidad y puntos de inflexión. Criterio de la segunda derivada. Problemas de aplicación.
- **4.4** Análisis de la variación de una función.

5 Sucesiones y series

Objetivo: El alumno utilizará los conceptos fundamentales de las sucesiones y de las series para determinar su carácter y para representar funciones por medio del desarrollo en series de potencias.

Contenido:

- **5.1** Definición de sucesión. Límite y convergencia de una sucesión. Sucesiones monótonas y acotadas.
- 5.2 Definición de serie. Convergencia de una serie. Propiedades y condiciones para la convergencia. Definición y propiedades de las operaciones con series: adición y multiplicación por un escalar.
- **5.3** Serie geométrica y serie p.
- **5.4** Series de términos positivos. Criterios de comparación y del cociente o de D'Alembert.
- **5.5** Series de signos alternados. Criterio de Leibniz.
- **5.6** Series de potencias de "x" y de "x-a". Radio e intervalo de convergencia.
- **5.7** Desarrollo de funciones en series de potencias. Serie de McLaurin, de Taylor y desarrollo de funciones trigonométricas.

Bibliografía básica

ANDRADE D., Arnulfo et al.

Cálculo diferencial e integral

México

Limusa - Facultad de Ingeniería, UNAM, 2004

LARSON, HOSTETLER y EDWARDS

Cálculo I
7a edición
Madrid
Pirámide, 2003

SOLAR Eduardo, y SPEZIALE, Leda *Álgebra I*México
Limusa - Facultad de Ingeniería, UNAM, 1997

Bibliografía complementaria

ANDRADE D., Arnulfo y CRAIL, Carlos Cuaderno de ejercicios de cálculo I México Facultad de Ingeniería - UNAM, 2004

LEITHOLD, Louis

El cálculo con geometría analítica 7a edición México Oxford University Press, 1998

PURCELL J. Edwin and VARBERG Dale

Calculus with Analytic Geometry
8th edition
New Jersey
Prentice Hall Inc., 2001

SPIVAK, Michael Cálculo infinitesimal 2a edición México Reverté, 1996

Cálculo Diferencial

(5/5)

STEWART, James *Cálculo* 4a edición México Thomson – Learning, 2002

SWOKOWSKI, Earl W., OLINICK, M., PENCE, D. *Calculus*USA
P.W.S. Publishing Company, 1994

Sugerencias didácticas

Exposición oral		Lecturas obligatorias	X
Exposición audiovisual		Trabajos de investigación	X
Ejercicios dentro de clase		Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Otras: Empleo de nuevas tecnologías	X

Forma de evaluar

Exámenes parciales		Participación en clase	X
Exámenes finales	X	Asistencias a prácticas	
Trabajos y tareas fuera del aula	X	Otras	

Perfil profesiográfico del académico que puede impartir el programa

Licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo contenido en el área de matemáticas sea similar. Deseable haber realizado estudios de posgrado, contar con experiencia docente o haber participado en cursos o seminarios de iniciación en la práctica docente.