

# Universidad Nacional Autónoma de México Facultades de Economía E Ingeniería



# LICENCIATURA EN ECONOMÍA Y NEGOCIOS

## PROGRAMA DE ESTUDIO

|                   | Física Experimental               |                            |             | P84°/P74°/P9        | 94°   | 07       |
|-------------------|-----------------------------------|----------------------------|-------------|---------------------|-------|----------|
|                   | Asignatura                        |                            | Clave       | Semestre            |       | Créditos |
| Ciencias Básicas  |                                   |                            | <b>F</b> i  | ísica General y Quí | ímica |          |
| División División |                                   |                            |             | Departamento        |       |          |
|                   | Asignatura:                       | Horas:                     |             | Total (horas):      |       |          |
|                   |                                   | -                          |             |                     |       |          |
|                   | Obligatoria X                     | Teóricas 2.5               |             | Semana              | 4.5   |          |
| (                 | Optativa                          | Prácticas 2.0              |             | 16 Semanas          | 72.0  |          |
| Tipo de asign     | natura: Teórica – Práctica        |                            |             |                     |       |          |
| Área de cono      | ocimiento: Matemáticas            |                            |             |                     |       |          |
| Modalidad:        | Curso, laboratorio                |                            |             |                     |       |          |
| Seriación an      | tecedente: Ninguna                |                            |             |                     |       |          |
| Seriación sul     | osecuente: Ninguna                |                            |             |                     |       |          |
| Seriación sur     | secucine. Tanguna                 |                            |             |                     |       |          |
| condictiones, es  | stimulando sus actitudes de obser | rvacion, investigacion y c | reatividad. |                     |       |          |
| Temario           |                                   |                            |             |                     |       |          |
|                   | Nombre                            |                            |             |                     | HORAS |          |
| 1                 |                                   |                            |             |                     | 5.0   |          |
| 2                 | •                                 | metrología                 |             |                     | 5.0   |          |
| 3                 |                                   |                            |             |                     | 5.0   |          |
| 4                 |                                   |                            |             |                     | 5.0   |          |
| 5                 |                                   |                            |             |                     | 5.0   |          |
| 6                 | Teoría Cinética y el ga           | as ideal                   |             |                     | 5.0   |          |
| 7                 | . Electricidad                    |                            |             |                     | 5.0   |          |
| 8                 | • Ondas                           |                            |             |                     | 5.0   |          |
|                   |                                   |                            |             |                     | 40.0  |          |
|                   | Prácticas de laboratori           | О                          |             |                     | 32.0  |          |
|                   | Total                             |                            |             |                     | 72.0  |          |
|                   |                                   | 0                          |             |                     |       |          |





#### 1 Introducción

**Objetivo:** El alumno incrementará su interés por el estudio de la física, a través del conocimiento de la importancia de esta ciencia en su carrera.

#### **Contenido:**

- **1.1** Definición de física y su campo de estudio.
- **1.2** Clasificación de la física: clásica y moderna.
- 1.3 Método de estudio en la física: el método científico experimental
- **1.4** Método de resolución de problemas.
- **1.5** Interacción entre la física y la economía.

### 2 Conceptos básicos de metrología

**Objetivo:** El alumno comprenderá la importancia de la medición en el estudio de la física y aplicará algunos de los procedimientos de obtención y manejo de datos experimentales.

#### Contenido:

- **2.1** La importancia de la medición en la física.
- **2.2** Conceptos de dimensiones y unidades.
- **2.3** Definiciones de unidad fundamental y unidad derivada.
- **2.4** Dimensiones de los sistemas de unidades absolutos y gravitatorios. Distinción esencial entre estos tipos de sistemas.
- **2.5** Dimensiones, unidades de base, derivadas y suplementarias del Sistema Internacional. Principio de homogeneidad dimensional. Reglas para la escritura de unidades. Prefijos utilizados en las unidades.
- **2.6** Mediciones directa e indirecta.
- **2.7** Conceptos de error, error sistemático y error aleatorio.
- **2.8** Sensibilidad de un instrumento de medición. Obtención experimental de la precisión y de la exactitud de un instrumento de medición. Proceso de calibración.
- **2.9** Manejo elemental de datos experimentales, incertidumbre de una medición, análisis estadístico elemental de datos experimentales, ajuste gráfico de curvas. Método de mínimos cuadrados.

### 3 Dinámica

**Objetivo:** El alumno determinará experimentalmente la aceleración de la gravedad local y analizará dinámicamente el movimiento uniformemente acelerado de un cuerpo.

#### **Contenido:**

- **3.1** Campo de estudio de la dinámica. Conceptos de posición, desplazamiento, velocidad media, velocidad instantánea, aceleración media y aceleración instantánea, masa, fuerza, peso, trabajo, energía potencial gravitatoria y energía cinética. Planeación del experimento.
- 3.2 Registro y tabulación de las variables desplazamiento "s" y tiempo "t"; cambio de variable  $z = t^2$ .
- 3.3 Modelo matemático que describe la relación entre el desplazamiento y el cuadrado del tiempo. Significado físico de la pendiente. Modelos matemáticos y gráficos que relacionan la velocidad y la aceleración con el tiempo.
- **3.4** Prueba del modelo y su aplicación en la solución de problemas de dinámica.





#### 4 Fluidos

**Objetivo:** El alumno determinará experimentalmente algunas propiedades de fluidos; obtendrá y comprobará la validez de la ecuación del gradiente de presión.

#### **Contenido:**

- **4.1** Campo de estudio de la mecánica de los fluidos. Cuerpo sólido y fluido ideal. Densidad, densidad relativa, volumen específico y peso específico. Medios homogéneos e isótropos. Presión. Planeación del experimento.
- **4.2** Registro y tabulación de las variables profundidad "y" y presión "P". Gráfica de las variables "P" y "y".
- **4.3** Ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida.
- **4.4** Ecuación del gradiente de presión. Uso del modelo en la determinación experimental de la presión atmosférica. Relación entre presión absoluta, relativa y atmosférica. Aplicación del modelo en la solución de problemas de hidrostática.
- **4.5** Prueba del modelo y su aplicación en la solución de problemas de dinámica.

#### 5 Calorimetría

**Objetivo:** El alumno determinará experimentalmente la capacidad térmica específica de algunas sustancias, mediante la aplicación de la primera ley de la termodinámica para sistemas cerrados y aislados.

#### **Contenido:**

- 5.1 Campo de estudio de la termodinámica. Conceptos de temperatura, equilibrio térmico, energía en forma de calor, energía interna y capacidad térmica específica. Sistemas abierto, cerrado y aislado. Primera ley de la termodinámica. Concepto de potencia. Efecto Joule Planeación del experimento.
- **5.2** Registro y tabulación de las variables: calor "Q" y temperatura "T". Modelo gráfico de la relación entre "Q" y "T".
- **5.3** Ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida.
- **5.4** Prueba del modelo y su aplicación en la determinación de la capacidad térmica específica de una sustancia y en la solución de problemas de calorimetría.

## 6 Teoría Cinética y el gas ideal

**Objetivo:** El alumno descubrirá y analizará los conceptos básicos que le permitan comprender el comportamiento de un gas ideal estudiando las variables físicas relevantes, de acuerdo con la Ley de estado del gas ideal.

- **6.1** Propiedades macroscópicas de un gas.
- **6.2** Ley de Boyle y Mariote, Ley de Charles y de Ley Gay Lussac.
- **6.3** Ecuaciones de estado.
- **6.4** Planeación de la experiencia práctica, para obtener en el laboratorio una de las leyes de los gases ideales.
- **6.5** Utilización del modelo obtenido en la práctica, para la solución de problemas básicos con gases ideales.





#### 7 Electricidad

**Objetivo:** El alumno determinará experimentalmente la resistencia eléctrica, a partir de la obtención del modelo matemático que relaciona la diferencia de potencial con la intensidad de corriente eléctrica.

#### **Contenido:**

- **7.1** Campo de estudio del electromagnetismo. Conceptos de carga eléctrica y sus tipos, campo eléctrico, diferencia de potencial y corriente eléctrica. Interacción entre campos eléctricos y magnéticos. Planeación del experimento.
- 7.2 Registro y tabulación de las variables: diferencia de potencial "V" y corriente eléctrica "i".
- **7.3** Ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida. Gráfica de la relación entre "V y la intensidad de corriente eléctrica "i".
- **7.4** Prueba del modelo y su aplicación en la solución de problemas de electricidad.

#### 8 Ondas

**Objetivo:** El alumno describirá y analizará el fenómeno ondulatorio estudiando experimentalmente algunas de sus variables físicas relevantes, para establecer su modelo matemático.

#### **Contenido:**

- **8.1** Conceptos de onda y onda viajera. Ondas longitudinales y transversales. Onda estacionaria. Movimiento armónico simple. Ondas viajeras unidimensionales armónicas. Amplitud y longitud de onda, número de onda y frecuencia angular. La función de onda para una onda armónica, frecuencia, rapidez de propagación y modos de vibración. Planeación del experimento.
- **8.2** Registro y tabulación de las variables: longitud de onda l y frecuencia f, cambio de variable t = 1/f.
- **8.3** Ecuación de una línea recta que represente los valores experimentales. Significado físico de la pendiente de la recta obtenida.
- **8.4** Prueba del modelo y su aplicación en la solución de problemas de movimiento ondulatorio.

### Bibliografía básica

RESNICK, Robert, HALLIDAY, David, y KRANE, Kenneth *Física volumen 1 y volumen 2*5a. edición
México
CECSA, 2004

SERWAY, Raymond A. *Física*5a. edición
México
McGraw-Hill, 2002
Tomo I y Tomo II





MANCILLA, Ricardo Introducción a la econofísica 3a. edición España Equipo Sirius, S.A. 2003

## Bibliografía Complementaria

TIPLER, Paul A. *Física para la ciencia y la tecnología*. Vol. I y II 4a. edición España Editorial Reverté, S.A., 2001

BENSON, Harris. Física universitaria. Vol. I y II. 1a. edición. México Grupo Patria Cultural, 2004

### Sugerencias didácticas

| Exposición oral            | X | Lecturas obligatorias             | X |
|----------------------------|---|-----------------------------------|---|
| Exposición audiovisual     | X | Trabajos de investigación         | X |
| Ejercicios dentro de clase | X | Prácticas de taller o laboratorio | X |
| Ejercicios fuera del aula  | X | Prácticas de campo                |   |
| Seminarios                 |   | Otras                             |   |

### Forma de evaluar

| Exámenes parciales               | X | Participación en clase  | X |
|----------------------------------|---|-------------------------|---|
| Exámenes finales                 | X | Asistencias a prácticas | X |
| Trabajos y tareas fuera del aula | X | Otras                   |   |

## Perfil profesiográfico del académico que puede impartir el programa

Licenciatura en Ingeniería, Física o carreras afines. Deseable experiencia profesional y recomendable con experiencia docente o con preparación en los programas de formación docente de la Facultad en la disciplina y en didáctica, habilidad para ejemplificar problemas relacionados con la economía y finanzas.